Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 64(3): 837-850, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38291973

RESUMO

The Martini coarse-grain force-field has emerged as an important framework to probe cellular processes at experimentally relevant time- and length-scales. However, the recently developed version, the Martini3 force-field with the implemented Go̅ model (Martini3Go̅), as well as previous variants of the Martini model have not been benchmarked and rigorously tested for globular proteins. In this study, we consider three globular proteins, ubiquitin, lysozyme, and cofilin, and compare protein dynamics and hydration with observables from experiments and all-atom simulations. We show that the Martini3Go̅ model is able to accurately model the structural and dynamic features of small globular proteins. Overall, the structural integrity of the proteins is maintained, as validated by contact maps, radii of gyration (Rg), and SAXS profiles. The chemical shifts predicted from the ensemble sampled in the simulations are consistent with the experimental data. Further, a good match is observed in the protein-water interaction energetics, and the hydration levels of the residues are similar to atomistic simulations. However, the protein-water interaction dynamics is not accurately represented and appears to depend on the protein structural complexity, residue specificity, and water dynamics. Our work is a step toward testing and assessing the Martini3Go̅ model and provides insights into future efforts to refine Martini models with improved solvation effects and better correspondence to the underlying all-atom systems.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Espalhamento a Baixo Ângulo , Difração de Raios X , Proteínas/química , Água/química
2.
Proteins ; 92(3): 317-328, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37864328

RESUMO

G protein-coupled receptors (GPCRs) are membrane-bound signaling proteins that play an essential role in cellular signaling processes. Due to their intrinsic function of transmitting internal signals in response to external cues, these receptors are adapted to be highly dynamic in nature. The ß2 -adrenergic receptor (ß2 AR) is a representative member of the family that has been extensively analyzed in terms of its structure and activation. Although the structure of the transmembrane domain has been characterized in the different functional states of the receptor, the conformational dynamics of the extramembrane domains, especially the intrinsically disordered regions are still emerging. In this study, we analyze the state-dependent dynamics of extramembrane domains of ß2 AR using atomistic molecular dynamics simulations. We introduce a parameter, the residue excess dynamics that allows us to better quantify receptor dynamics. Using this measure, we show that the dynamics of the extramembrane domains are sensitive to the receptor state. Interestingly, the ligand-bound intermediate R ' state shows the maximal dynamics compared to either the active R*G or inactive R states. Ligand binding appears to be correlated with high residue excess dynamics that are dampened upon G protein coupling. The intracellular loop-3 (ICL3) domain has a tendency to flip towards the membrane upon ligand binding, which could contribute to receptor "priming." We highlight an important ICL1-helix-8 interplay that is broken in the ligand-bound state but is retained in the active state. Overall, our study highlights the importance of characterizing the functional dynamics of the GPCR loop domains.


Assuntos
Simulação de Dinâmica Molecular , Receptores Acoplados a Proteínas G , Ligantes , Receptores Acoplados a Proteínas G/metabolismo , Domínios Proteicos , Proteínas de Membrana , Receptores Adrenérgicos , Receptores Adrenérgicos beta 2/química
3.
J Phys Chem B ; 127(51): 11000-11010, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38111968

RESUMO

The G protein-coupled receptor (GPCR) superfamily of cell surface receptors has been shown to be functionally modulated by post-translational modifications. The glucagon-like peptide receptor-1 (GLP-1R), which is a drug target in diabetes and obesity, undergoes agonist-dependent palmitoyl tail conjugation. The palmitoylation in the C-terminal domain of GLP-1R has been suggested to modulate the receptor-lipid microenvironment. In this work, we have performed coarse-grain molecular dynamics simulations of palmitoylated and nonpalmitoylated GLP-1R to analyze the differential receptor-lipid interactions. Interestingly, the placement and dynamics of the C-terminal domain of GLP-1R are found to be directly dependent on the palmitoyl tail. We observe that both cholesterol and phospholipids interact with the receptor but display differential interactions in the presence and absence of the palmitoyl tail. We characterize important cholesterol-binding sites and validate sites that have been previously reported in experimentally resolved structures of the receptor. We show that the receptor acts like a conduit for cholesterol flip-flop by stabilizing cholesterol in the membrane core. Taken together, our work represents an important step in understanding the molecular effects of lipid modifications in GPCRs.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1 , Lipoilação , Receptor do Peptídeo Semelhante ao Glucagon 1/química , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Sítios de Ligação , Receptores Acoplados a Proteínas G/metabolismo , Lipídeos
4.
Phys Chem Chem Phys ; 25(44): 30259-30268, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37927067

RESUMO

Understanding the molecular processes of nanowire self-assembly is crucial for designing and controlling nanoscale structures that could lead to breakthroughs in functional materials. In this work, we focus on pristine phthalocyanines as a representative example of mesogenic supramolecular assemblies and have analyzed the formation of nanowires using classical molecular dynamics simulations. In the simulations, the molecules spontaneously form multi-columnar structures resembling supramolecular polymers that subsequently grow into more ordered aggregates. These self-assemblies are concentration dependent, leading to the formation of multi-columnar, dynamic aggregates at higher concentrations and nanowires at lower concentrations. The multi-columnar assemblies on a whole are more disordered than the nanowires, but have locally ordered domains of parallel facing molecules that can fluctuate while maintaining their overall shape. The nanowire formation at lower concentrations involves the initial interaction and clustering of randomly oriented phthalocyanine molecules, followed by the merging of small clusters into elongated segments and the eventual formation of a stable nanowire. We observe three main conformers in these self-assemblies, the parallel, T-shaped and edge-to-edge stacking of the phthalocyanine dimers. We calculate the underlying free energy landscape and show that the parallel conformers form the most stable configuration which is followed by the T-shaped and edge-to-edge dimer configurations. The findings provide insights into the mechanisms and pathways of nanowire formation and a step towards the understanding of self-assembly processes in supramolecular mesogens.

5.
iScience ; 26(7): 107031, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37448564

RESUMO

The Ras superfamily of GTPases regulate critical cellular processes by shuttling between GTP-bound ON and GDP-bound OFF states. This switching mechanism is attributed to the conformational changes in two loops, SWI and SWII, upon GTP binding and hydrolysis. Since these conformational changes vary across the Ras superfamily, there is no generic parameter to define their functional states. A unique wavelet coherence (WC) analysis-based approach developed here shows that the structural changes in switch regions could be mapped onto the wavelet coherence phase couplings (WPCs). Thus, WPCs could serve as unique parameters to define their functional states. Disentanglement of WPCs in oncogenic GTPases shows how breakdown of structural allostery leads to their aberrant function. These observations stand out even for simulated ensemble of switch region conformers. Overall, for the first time, we show that WPCs could unravel the latent structural deviations in Ras proteins to decode their universal switching mechanism.

6.
Soft Matter ; 19(22): 4021-4028, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37222752

RESUMO

Membrane topology changes are associated with various cellular processes and are modulated by synergistic effects between lipid composition and membrane-associated proteins. However, how protein shape or conformational dynamics couples to membrane molecular properties remains unclear. In this work, we aim to investigate this coupling behavior using the curvature-inducing protein caveolin-1. We considered distinct protein conformers of the helical hairpin protein corresponding to different protein shapes, such as the wedge and the banana-shaped conformers. The different protein conformers were simulated in a coarse-grain representation in the presence of cholesterol-sphingomyelin rich membrane. We observed that membrane curvature is dependent on protein shape and is the lowest for the wedge conformer and maximal for the banana conformer. The differences in the net stress between the two membrane leaflets, calculated from the lateral pressure profile distributions in lipid bilayers for different protein conformers, show a similar trend. In conjunction, we show that cholesterol and sphingomyelin clustering in the membrane is modulated by protein shape. Overall, our results provide molecular-level insights into the coupling between membrane topology, protein shape and lipid clustering in cell membranes.


Assuntos
Bicamadas Lipídicas , Esfingomielinas , Membrana Celular/metabolismo , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo , Colesterol
7.
Chemphyschem ; 24(3): e202200509, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36200760

RESUMO

The actin cytoskeleton interacts with the cell membrane primarily through the indirect interactions of actin-binding proteins such as cofilin-1. The molecular mechanisms underlying the specific interactions of cofilin-1 with membrane lipids are still unclear. Here, we performed coarse-grain molecular dynamics simulations of cofilin-1 with complex lipid bilayers to analyze the specificity of protein-lipid interactions. We observed the maximal interactions with phosphoinositide (PIP) lipids, especially PIP2 and PIP3 lipids. A good match was observed between the residues predicted to interact and previous experimental studies. The clustering of PIP lipids around the membrane bound protein leads to an overall lipid demixing and gives rise to persistent membrane curvature. Further, through a series of control simulations, we observe that both electrostatics and geometry are critical for specificity of lipid binding. Our current study is a step towards understanding the physico-chemical basis of cofilin-PIP lipid interactions.


Assuntos
Fatores de Despolimerização de Actina , Fosfatidilinositóis , Fosfatidilinositóis/análise , Fosfatidilinositóis/metabolismo , Eletricidade Estática , Fatores de Despolimerização de Actina/análise , Fatores de Despolimerização de Actina/metabolismo , Membrana Celular/química , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Simulação de Dinâmica Molecular , Ligação Proteica
8.
ACS Chem Neurosci ; 13(23): 3403-3415, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36351047

RESUMO

The interaction of lipids with G-protein-coupled receptors (GPCRs) has been shown to modulate and dictate several aspects of GPCR organization and function. Diverse lipid interaction sites have been identified from structural biology, bioinformatics, and molecular dynamics studies. For example, multiple cholesterol interaction sites have been identified in the serotonin1A receptor, along with distinct and overlapping sphingolipid interaction sites. How these lipids interact with each other and what is the resultant effect on the receptor is still not clear. In this work, we have analyzed lipid-lipid crosstalk at the receptor of the serotonin1A receptor embedded in a membrane bilayer that mimics the neuronal membrane composition by long coarse-grain simulations. Using a set of similarity coefficients, we classified lipids that bind at the receptor together as synergistic cobinding, and those that bind individually as competitive. Our results show that certain lipids interact with the serotonin1A receptor in synergy with each other. Not surprisingly, the ganglioside GM1 and cholesterol show a synergistic cobinding, along with the relatively uncommon GM1-phosphatidylethanolamine (PE) and cholesterol-PE synergy. In contrast, certain lipid pairs such as cholesterol and sphingomyelin appear to be in competition at several sites, despite their coexistence in lipid nanodomains. In addition, we observed intralipid competition between two lipid tails, with the receptor exhibiting increased interactions with the unsaturated lipid tails. We believe our work represents an important step in understanding the diversity of GPCR-lipid interactions and exploring synergistic cobinding and competition in natural membranes.


Assuntos
Gangliosídeo G(M1) , Receptor 5-HT1A de Serotonina , Serotonina , Biologia Computacional , Colesterol
9.
J Membr Biol ; 255(6): 633-635, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36367553
10.
Biochem Biophys Res Commun ; 631: 32-40, 2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36162327

RESUMO

Dedicator of cytokinesis (DOCK) family of guanine nucleotide exchange factors (GEFs) activate two members of Rho family GTPases, Rac1/Cdc42, to exert diverse cellular processes, including cell migration. As DOCK GEFs have been critically implicated in tumour cell migration, understanding their function and specificity is imperative for designing anti-metastatic drugs. Based on their GTPase specificity they have been classified as Rac, Cdc42 and dual specific GEFs. Despite extensive structural studies, the factors that determine GTPase specificity of DOCK GEFs have remained elusive. Here, we show that subtle dynamical coupling between GEF and GTPase structures modulate the binding interface to generate mutual specificity. To cluster the dynamically coupled residues in GEF-GTPase complexes a novel intra-residue backbone-torsion-angles based mutual information (TMI) technique was employed. TMI was calculated from 4500 trajectories obtained from a total of 4.5µs molecular dynamics simulations performed on members of all the three clades of DOCK GEFs. The obtained clusters suggest a specificity generation mechanism that involves optimization of the binding pocket for the crucial divergent residue at the 56th position of Rac/Cdc42 (FCdc42/WRac1). These clusters encompass five residues from the structural segment lobe C - α10 helix of the DOCK proteins and functional SWI region of GTPase, which induce orchestrated structural modulations to generate the specificity. Even the conserved residues from SWI region are seen to augment the specificity defining dynamical rearrangements. Furthermore, the proposed dynamical GTPase- DOCK GEF specificity model was verified using mutagenesis studies on Rac1 and dual GTPase specific Dock2 and Dock6, respectively. Thus the current study provides the generic substrate specificity determinants of DOCK GEFs, which are not apparent from the conventional structural analysis.


Assuntos
Citocinese , Fatores de Troca do Nucleotídeo Guanina , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Mutagênese , Especificidade por Substrato
11.
ACS Omega ; 7(27): 23115-23126, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35847342

RESUMO

Post-translational modifications remarkably regulate proteins' biological function. Small molecules such as reactive thiols, metabolites, and drugs may covalently modify the proteins and cause structural changes. This study reports the covalent modification and noncovalent interaction of insulin and captopril, an FDA-approved antihypertensive drug, through mass spectrometric and computation-based approaches. Mass spectrometric analysis shows that captopril modifies intact insulin, reduces it into its "A" and "B" chains, and covalently modifies them by forming adducts. Since captopril has a reactive thiol group, it might reduce the insulin dimer or modify it by reacting with cysteine residues. This was proven with dithiothreitol treatment, which reduced the abundance of captopril adducts of insulin A and B chains and intact Insulin. Liquid chromatography tandem mass spectrometric analysis identified the modification of a total of four cysteine residues, two in each of the A and B chains of insulin. These modifications were identified to be Cys6 and Cys7 of the A chain and Cys7 and Cys19 of the B chain. Mass spectrometric analysis indicated that captopril may simultaneously modify the cysteine residues of intact insulin or its subunits A and B chains. Biophysical studies involving light scattering and thioflavin T assay suggested that the binding of captopril to the protein leads to the formation of aggregates. Docking and molecular dynamics studies provided insights into the noncovalent interactions and associated structural changes in insulin. This work is a maiden attempt to understand the detailed molecular interactions between captopril and insulin. These findings suggest that further investigations are required to understand the long-term effect of drugs like captopril.

12.
J Struct Biol ; 214(3): 107877, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35750237

RESUMO

Chemokine receptors are the central signaling hubs of several processes such as cell migration, chemotaxis and cell positioning. In this graphical review, we provide an overview of the structural and mechanistic principles governing chemokine recognition that are currently emerging. Structural models of chemokine-receptor co-complexes with endogenous chemokines, viral chemokines and therapeutics have been resolved that highlight multiple interaction sites, termed as CRS1, CRS1.5 etc. The first site of interaction has been shown to be the N-terminal domain of the receptors (CRS1 site). A large structural flexibility of the N-terminal domain has been reported that was supported by both experimental and simulation studies. Upon chemokine binding, the N-terminal domain appears to show constricted dynamics and opens up to interact with the chemokine via a large interface. The subsequent sites such as CRS1.5 and CRS2 sites have been structurally well resolved although differences arise such as the localization of the N-terminus of the ligand to a major or minor pocket of the orthosteric binding site. Several computational studies have highlighted the dynamic protein-protein interface at the CRS1 site that seemingly appears to resolve the differences in NMR and mutagenesis studies. Interestingly, the differential dynamics at the CRS1 site suggests a mixed model of binding with complex signatures of both conformational selection and induced fit models. Integrative experimental and computational approaches could help unravel the structural basis of promiscuity and specificity in chemokine-receptor binding and open up new avenues of therapeutic design.


Assuntos
Receptores de Quimiocinas , Transdução de Sinais , Sítios de Ligação , Quimiocinas/química , Quimiocinas/metabolismo , Ligação Proteica , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo
13.
J Membr Biol ; 255(2-3): 225-236, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35467110

RESUMO

Caveolin-1 is one of the main protein components of caveolae that acts as a mechanosensor at the cell membrane. The interactions of caveolin-1 with membranes have been shown to lead to complex effects such as curvature and the clustering of specific lipids. Here, we review the emerging concepts on the molecular interactions of caveolin-1, with a focus on insights from coarse-grain molecular dynamics simulations. Consensus structural models of caveolin-1 report a helix-turn-helix core motif with flanking domains of higher disorder that could be membrane composition dependent. Caveolin-1 appears to be mainly surface-bound and does not embed very deep in the membrane to which it is bound. The most interesting aspect of caveolin-1 membrane binding is the interplay of cholesterol clustering and membrane curvature. Although cholesterol has been reported to cluster in the vicinity of caveolin-1 by several approaches, simulations show that the clustering is maximal in membrane leaflet opposing the surface-bound caveolin-1. The intrinsic negative curvature of cholesterol appears to stabilize the negative curvature in the opposing leaflet. In fact, the simulations show that blocking cholesterol clustering (through artificial position restraints) blocks membrane curvature, and vice versa. Concomitant with cholesterol clustering is sphingomyelin clustering, again in the opposing leaflet, but in a concentration-dependent manner. The differential stress due to caveolin-1 binding and the inherent asymmetry of the membrane leaflets could be the determinant for membrane curvature and needs to be further probed. The review is an important step to reconcile the molecular level details emerging from simulations with the mesoscopic details provided by state of the art experimental approaches.


Assuntos
Caveolina 1 , Bicamadas Lipídicas , Caveolina 1/metabolismo , Membrana Celular/metabolismo , Colesterol/química , Bicamadas Lipídicas/química , Esfingomielinas/metabolismo
14.
Int J Biol Macromol ; 206: 812-822, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35306016

RESUMO

The chemokine receptor CXCR4 and its cognate ligand CXCL12 mediate pathways that lead to cell migration and chemotaxis. Although the structural details of related receptor-ligand complexes have been resolved, the roles of the N-terminal domain of the receptor and post-translational sulfation that are determinants of ligand selectivity and affinity remain unclear. Here, we analyze the structural dynamics induced by receptor sulfation by combining molecular dynamics, docking and network analysis. The sulfotyrosine residues, 7YsN-term, 12YsN-term and 21YsN-term allow the N-terminal domain of the apo-sulfated receptor to adopt an "open" conformation that appears to facilitate ligand binding. The overall topology of the CXCR4-CXCL12 complex is independent of the sulfation state, but an extensive network of protein-protein interactions characterizes the sulfated receptor, in line with its increased ligand affinity. The altered interactions of sulfotyrosine residues, such as 21YsN-term-47RCXCL12 replacing the 21YN-term-13FCXCL12 interaction, propagate via allosteric pathways towards the receptor lumen. In particular, our results suggest that the experimentally-reported receptor-ligand interactions 262D6.58-8RCXCL12 and 277E7.28-12RCXCL12 could be dependent on the sulfation state of the receptor and need to be carefully analyzed. Our work is an important step in understanding chemokine-receptor interactions and how post-translational modifications could modulate receptor-ligand complexes.


Assuntos
Simulação de Dinâmica Molecular , Tirosina , Ligantes , Conformação Molecular , Ligação Proteica , Tirosina/química
15.
J Biol Chem ; 298(3): 101631, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35090891

RESUMO

Copper(I) is an essential metal for all life forms. Though Cu(II) is the most abundant and stable state, its reduction to Cu(I) via an unclear mechanism is prerequisite for its bioutilization. In eukaryotes, the copper transporter-1 (CTR1) is the primary high-affinity copper importer, although its mechanism and role in Cu(II) reduction remain uncharacterized. Here we show that extracellular amino-terminus of human CTR1 contains two methionine-histidine clusters and neighboring aspartates that distinctly bind Cu(I) and Cu(II) preceding its import. We determined that hCTR1 localizes at the basolateral membrane of polarized MDCK-II cells and that its endocytosis to Common-Recycling-Endosomes is regulated by reduction of Cu(II) to Cu(I) and subsequent Cu(I) coordination by the methionine cluster. We demonstrate the transient binding of both Cu(II) and Cu(I) during the reduction process is facilitated by aspartates that also act as another crucial determinant of hCTR1 endocytosis. Mutating the first Methionine cluster (7Met-Gly-Met9) and Asp13 abrogated copper uptake and endocytosis upon copper treatment. This phenotype could be reverted by treating the cells with reduced and nonreoxidizable Cu(I). We show that histidine clusters, on other hand, bind Cu(II) and are crucial for hCTR1 functioning at limiting copper. Finally, we show that two N-terminal His-Met-Asp clusters exhibit functional complementarity, as the second cluster is sufficient to preserve copper-induced CTR1 endocytosis upon complete deletion of the first cluster. We propose a novel and detailed mechanism by which the two His-Met-Asp residues of hCTR1 amino-terminus not only bind copper, but also maintain its reduced state, crucial for intracellular uptake.


Assuntos
Transportador de Cobre 1 , Cobre , Metionina , Cobre/metabolismo , Transportador de Cobre 1/química , Transportador de Cobre 1/metabolismo , Endocitose , Histidina , Humanos , Metionina/química , Metionina/metabolismo
16.
Adv Protein Chem Struct Biol ; 128: 361-396, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35034724

RESUMO

G protein-coupled receptors (GPCRs) are membrane proteins that play a central role in cell signaling and constitute one of the largest classes of drug targets. The molecular mechanisms underlying GPCR function have been characterized by several experimental and computational methods and provide an understanding of their role in physiology and disease. Population variants arising from nsSNPs affect the native function of GPCRs and have been implicated in differential drug response. In this chapter, we provide an overview on GPCR structure and activation, with a special focus on the ß2-adrenergic receptor (ß2-AR). First, we discuss the current understanding of the structural and dynamic features of the wildtype receptor. Subsequently, the population variants identified in this receptor from clinical and large-scale genomic studies are described. We show how computational approaches such as bioinformatics tools and molecular dynamics simulations can be used to characterize the variant receptors in comparison to the wildtype receptor. In particular, we discuss three examples of clinically important variants and discuss how the structure and function of these variants differ from the wildtype receptor at a molecular level. Overall, the chapter provides an overview of structure and function of GPCR variants and is a step towards the study of inter-individual differences and personalized medicine.


Assuntos
Simulação de Dinâmica Molecular , Transdução de Sinais , Biologia Computacional , Proteínas de Membrana , Medicina de Precisão
20.
Faraday Discuss ; 232(0): 218-235, 2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34545870

RESUMO

Caveolin-1 (cav-1) is a multi-domain membrane protein that is a key player in cell signaling, endocytosis and mechanoprotection. It is the principle component of cholesterol-rich caveolar domains and has been reported to induce membrane curvature. The molecular mechanisms underlying the interactions of cav-1 with complex membranes, leading to modulation of membrane topology and the formation of cholesterol-rich domains, remain elusive. In this study, we aim to understand the effect of lipid composition by analyzing the interactions of cav-1 with complex membrane bilayers comprised of about sixty lipid types. We have performed a series of coarse-grain molecular dynamics simulations using the Martini force-field with a cav-1 protein construct (residue 82-136) that includes the membrane binding domains and a palmitoyl tail. We observe that cav-1 induces curvature in this complex membrane, though it is restricted to a nanometer length scale. Concurrently, we observe a clustering of cholesterol, sphingolipids and other lipid molecules leading to the formation of nanodomains. Direct microsecond timescale interactions are observed for specific lipids such as cholesterol, phosphatidylserine and phosphatidylethanolamine lipid types. The results indicate that there is an interplay between membrane topology and lipid species. Our work is a step toward understanding how lipid composition and organization regulate the formation of caveolae, in the context of endocytosis and cell signaling.


Assuntos
Cavéolas , Caveolina 1 , Cavéolas/metabolismo , Caveolina 1/metabolismo , Membrana Celular/metabolismo , Colesterol , Análise por Conglomerados , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...